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Abstract

Large-scale structural patterns commonly occur in network models of complex systems including a skewed node degree distribution

and small-world topology. These patterns suggest common organizational constraints and similar functional consequences. Here, we

investigate a structural pattern termed pathway proliferation. Previous research enumerating pathways that link species determined that

as pathway length increases, the number of pathways tends to increase without bound. We hypothesize that this pathway proliferation

influences the flow of energy, matter, and information in ecosystems. In this paper, we clarify the pathway proliferation concept,

introduce a measure of the node–node proliferation rate, describe factors influencing the rate, and characterize it in 17 large empirical

food-webs. During this investigation, we uncovered a modular organization within these systems. Over half of the food-webs were

composed of one or more subgroups that were strongly connected internally, but weakly connected to the rest of the system. Further,

these modules had distinct proliferation rates. We conclude that pathway proliferation in ecological networks reveals subgroups of

species that will be functionally integrated through cyclic indirect effects.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

Large-scale structural patterns have been uncovered in
network models of complex systems, suggesting the
possibility of common organizational constraints and
similar functional consequences. Network models are
mathematical graphs composed of nodes and undirected
edges or directed arcs that connect the nodes. For example,
in a social network nodes might represent individuals in a
community and the edges or links could represent a social
relationship between the individuals such as collaboration
(Newman, 2001a, b). In a model of the World Wide Web,
web pages are nodes connected by hyperlinks (Albert et al.,
e front matter r 2006 Elsevier Ltd. All rights reserved.
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1999; Barabási and Albert, 1999). Ecologists use network
models in many ways, including to represent trophic
relations in food-webs and more generally energy–matter
flux in ecosystems (Cohen et al., 1990; Higashi and Burns,
1991; Margalef, 1963; Pimm, 1982). In these networks,
species or functional groups form the node set while the
presence of energy and matter transfers and transforma-
tions are represented by links.
Traditionally, complex systems have been modeled using

random graphs (Erdös and Rényi, 1959, 1960; Gardner
and Ashby, 1970; May, 1972). However, ecologists have
demonstrated that random graphs are inadequate models
of ecological systems; food-web and ecosystem models
often contain structures not commonly found in random
graphs (Cohen et al., 1990; DeAngelis, 1975; Lawler, 1978;
Pimm, 1979, 1982; Pimm et al., 1991; Ulanowicz and
Wolff, 1991). In food-webs, these hypothesized structures
include short food-chain lengths (Pimm and Lawton, 1977;
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Post, 2002) and little or no cycling (Cohen et al., 1990). In
addition, several forms of modularity—hierarchic com-
partmentalization into subsystems—have been hypothe-
sized for food-webs and ecosystems (Allen and Starr, 1982;
May, 1972; Pimm, 1979; Pimm and Lawton, 1980; Yodzis,
1982). Furthermore, Ulanowicz and Wolff (1991) demon-
strated that random networks (based on the Poisson,
uniform, Gaussian, negative exponential, and log-normal
probability distribution functions) failed to capture the
distribution of connections in real ecosystems. Ecologists
hypothesize that these structural differences exist because
ecological systems are shaped and constrained by thermo-
dynamic laws and natural history (Jørgensen et al., 1992;
Lawler, 1978; Müller and Leupelt, 1998; Williams and
Martinez, 2000).

Likewise, investigations of other types of complex
systems have identified a number of distinctive patterns
common in complex systems not found in purely random
graphs (Albert and Barabási, 2002; Moreno and Jennings,
1938; Newman, 2002, 2003; Price, 1965). For example, the
distribution of node degree (i.e. the number of edges (links)
incident to a node) is often skewed in models of complex
systems, following an exponential distribution or a power-
law distribution rather than the Poisson distribution of
random graphs. The power-law distribution was found in
the World Wide Web (Barabási and Albert, 1999),
metabolic networks (Jeong et al., 2000), and some but
not all food-webs (Dunne et al., 2002b; Montoya and Sole,
2002). The power-law degree distribution implies that there
are a large number of nodes with very few connections,
while a few nodes have a large number of connections
(Barabási, 2002). This topology tends to increase network
robustness to random node or edge deletion, while making
it more sensitive to targeted attacks (Albert et al., 2000;
Dunne et al., 2002b). The small-world pattern is another
commonly found topology (Watts, 1999; Watts and
Strogatz, 1998). In small-world networks, the degree of
node clustering is larger and the maximum distance (where
distance is the shortest path between two nodes) is lower
than expected from random graphs. This arrangement
tends to increase the transmission speed of diseases, energy,
matter, and information through networks. The largest
distance in food-web graphs tends to be small, but the
degree of clustering varies (Dunne et al., 2002a).

Pathway proliferation is another large-scale topological
characteristic of networks, with implications for energy,
matter, and information transmission. It is the tendency for
the number of pathways in a network to increase
geometrically without bound as pathway length increases.
Patten and colleagues (Patten, 1985a, b; Patten et al., 1982)
first observed this tendency in small, well-connected
ecosystem models during the early development of
ecosystem network analysis. More recently, Fath (1998)
and Borrett and Patten (2003) showed that the rate of
pathway proliferation is variable among networks. This is
significant because the pathway proliferation rate char-
acterizes how quickly the number of indirect pathways
increases, and thus, the number of pathways available for
interactions. Food-web investigations often emphasize the
shortest pathways, assuming that most significant interac-
tions occur over these routes (e.g. Caldarelli et al., 1998;
Post et al., 2000). However, previous results from Network
Environ Analysis, an environmental application and
extension of economic Input–Output Analysis, indicate
that flows over longer indirect pathways can be significant
or even dominant constituents of total system throughflow
(Higashi and Patten, 1986, 1989; Patten, 1983), which
is a measure of whole system activity. This result has
important implications for trophodynamics (Burns et al.,
1991; Patten et al., 1990; Whipple, 1998) and biogeochem-
ical cycling in ecosystems (Borrett et al., 2006; Finn, 1980;
Patten et al., 1976). Given the possible significance of
indirect pathways in network models of conservative
transport systems like ecosystems, it is critical to under-
stand the network characteristics influencing the pathway
proliferation rate.
In this paper, we clarify the pathway proliferation

concept, describe factors influencing the proliferation rate,
and characterize pathway proliferation rates in 17 large
empirical food-webs. In Section 2 we review relevant
mathematics to build a better understanding of pathway
proliferation. In Section 3 we apply this understanding to
17 food-web models drawn from the literature. This
analysis reveals a type of modularity in some of the food-
webs, lending support to the hypothesis that food-webs
have a modular structure (Allesina et al., 2005; Krause
et al., 2003; May, 1972; Pimm and Lawton, 1980; Yodzis,
1982). We conclude by summarizing our findings, discuss-
ing their relevance for ecological systems, and suggesting
next steps along this research path.

2. Pathway proliferation

Although Patten and colleagues (Patten, 1985a, b; Patten
et al., 1982) introduced pathway proliferation into the
ecological literature over two decades ago, it is not well
understood. In this section, we synthesize mathematical
results from graph theory and matrix algebra to determine
a method for quantifying the node–node pathway pro-
liferation rate, and to identify the bounds and expected
value of the rate. In addition, we uncover the possibility of
differing rates of pathway proliferation for modules within
a network.
Network models of complex systems are mathematically

graphs which can be directed or weighted (Bang-Jensen
and Gutin, 2001; Ponstein, 1966). A graph G is specified by
a set of n nodes and e unoriented edges ð0pepnðn� 1Þ=
2þ nÞ, where edges indicate an undirected relationship
between two nodes. A directed graph (digraph) D is also
specified by a set of n nodes, but instead of edges it has L

oriented arcs or links ð0pLpn2Þ. Digraph structure is
partially characterized by two connectivity measures,
connectance C ¼ L=n2 and link density L=n, which are
common metrics in the food-web literature (Cohen et al.,
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1990; Martinez, 1991). Edges and links can be assigned
weights to represent the relationship strength.

In this paper, we focus on simple unweighted digraphs,
where simple implies no more than one link from one node
to any other. We do this for two reasons. First, directed
graphs are often appropriate for ecological applications as
many ecological processes are oriented (e.g. predation and
excretion generate energy and matter flows from one
ecosystem element to another). Second, while the mathe-
matics described in this paper may apply to non-simple and
weighted graphs, our interest here is primarily network
structure as it is a necessary element of understanding
ecosystem organization.

2.1. Quantifying pathway proliferation

Here, we review relevant definitions and results from graph
theory and linear algebra. We first show why the dominant
eigenvalue of a strongly connected digraph is a good measure
of the node–node proliferation rate. We conclude by
describing how the dominant eigenvalue can distinguish
between fundamentally different ecological networks.

In a directed graph, a pathway is an alternating sequence
of nodes and links connecting a starting and a terminal
node. Pathway length m is the number of links in the
pathway. For example, in the directed graph D in Fig. 1a
there is a pathway of length 2 from nodes 1 to 3 (e.g.
1! 2! 3). Cycles are pathways with the same starting
and terminal nodes, and a cycle of length 1 is a self-loop. In
our example network, 1! 2! 3! 1 is cycle of length 3,
and 4! 4 is a self-loop. Pathways with self-loops are
termed walks, those without are paths (Patten, 1985a).
Alternatively, we can represent D with its associated and
isomorphic adjacency matrix An�n ¼ ðaijÞ, where aij ¼ 1 if
and only if there is a link from j to i (note column to row
orientation), otherwise aij ¼ 0 (Fig. 1b). The number of
direct links terminating or starting at a node is termed the
in- and out-degree, respectively. These are calculated as
kin ¼ ðkin

i Þ ¼
Pn

j¼1aij and kout ¼ ðkout
j Þ ¼

Pn
i¼1aij, where kin

and kout are 1� n and n� 1 vectors, respectively. Average
in- and out-degrees (hkin

i or hkout
i), and degree distribu-

tions PðkÞ are ways of characterizing network structure
(Albert and Barabási, 2002; Newman, 2003; Ulanowicz
and Wolff, 1991).

Indirect pathways ðm41Þ are enumerated by raising the
adjacency matrix to the mth power Am

¼ ðaijÞ
m (Ponstein,

1966). Again, pathway proliferation is the tendency for the
number of pathways in a network to increase without
bound as a function of increasing pathway length (Fig. 1c).
Borrett and Patten (2003) approximated whole-system
pathway proliferation rate as

logð
PP

a
ðmÞ
ij Þ

logð
PP

a
ðm�1Þ
ij Þ

,

where a
ðmÞ
ij signifies the aij element of Am, but this aggregate

estimate only holds for sufficiently large m. Therefore,
following Fath (1998), here we will define pathway
proliferation in terms of the rate at which a

ðmÞ
ij changes as

m!1. This makes pathway proliferation a combinator-
ial property of A (Seneta, 1973).
As m increases, the development of Am is determined by

its characteristic polynomial, pðlÞ ¼ detðlI� AÞ, where l is
the variable in the polynomial and In�n is the identity
matrix (Godsil, 1993; Seneta, 1973). The eigenvalues
(li, i ¼ 1; . . . ; n) of A are roots of the characteristic
polynomial, determined as solutions to pðlÞ ¼ 0. The set
of eigenvalues fl1Xl2X � � �XliX � � �Xlng is the spectrum
of A, which Cvetkoviâc et al. (1980) study to determine
structural properties of graphs. In undirected graphs, A is
symmetric and all li are real; in directed graphs li may be a
complex number.
In addition to being the roots of the characteristic

polynomial, the eigenvalues must satisfy AW ¼ KW, where
Wn�n ¼ ½w1jw2j . . . jwij . . . jwn� is a composite matrix of
the right eigenvectors wi, and Kn�n ¼ diagðliÞ is a matrix
with the eigenvalues of A on the principle diagonal and
zeros in all other positions. Further, the eigenvalues must
satisfy VA ¼ VK, where Vn�n ¼ ½v1jv2j . . . jvij . . . jvn� is a
composite matrix of the left eigenvectors vi. Am is then
determined as

Am
¼W� Km

�W�1,

Am
¼W�

lm
1 0 � � � 0

0 lm
2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � lm
n

2
6666664

3
7777775
�W�1, ð1Þ

where W is as before and W�1 is the matrix inverse of W,
which are the transposed complex conjugates of the left
eigenvectors V (Caswell, 2001). If we let v%

i be the ith row
of W�1, then we can rewrite Eq. (1) as

Am
¼ lm

1 w1v
%

1 þ lm
2 w2v

%

2 þ � � � þ lm
i wiv

%

i þ lm
n wnv

%

n . ð2Þ

Eq. (2) is the pathway generating function of A (Godsil,
1993), and illustrates how the development of Am depends
on the spectrum of A.
Next, we introduce two classification schemes, one for

digraphs and one for matrices, because they are required to
apply a theorem that will let us develop a succinct estimate
of the pathway proliferation rate. In the first scheme,
digraphs are classified as one of three types: strongly
connected, weakly connected, and disconnected. A digraph
is strongly connected (strong) if it is possible to reach every
node from every other over a pathway of unspecified
length. Bang-Jensen and Gutin (2001) define a (sub)di-
graph with only one node as strong, though this is trivial
for our purposes. A weakly connected (weak) digraph is
one in which it is possible to reach any node from any
other node if we ignore link orientation, but it is impossible
when following link orientation. Nodes of a weak digraph
must have an in-degree or out-degree of at least 1.
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Fig. 1. Example digraph, its associated adjacency matrix, and pathway proliferation. (a) Digraph D composed of strongly connected components

K1 ¼ f1; 2; 3g, K2 ¼ f4g, K3 ¼ f5g, K4 ¼ f6g, K5 ¼ f7g, (b) the adjacency matrix A associated with the digraph D (dotted lines denote strongly connected

components), and (c) a plot demonstrating pathway proliferation from nodes 3 to 1: the number of pathways a
ðmÞ
31 increases as pathway length m increases.

Transient effects created by smaller eigenvalues are visible in the first 10 pathway lengths, but the rate of pathway proliferation has nearly converged to

l1ðK1Þ ¼ 1:32 by a pathway length of 20.
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A disconnected graph is one that contains one or more
non-adjacent strong or weak components. The digraph in
Fig. 1a is disconnected.

The second classification scheme distinguishes three
types of adjacency matrices. A matrix is irreducible if and
only if it is associated with a strong digraph, while one
associated with a weakly connected or disconnected
digraph is reducible (Berman and Plemmons, 1979).
Irreducible matrices are further divided into two classes:
primitive and imprimitive. A primitive matrix is an
irreducible matrix that becomes positive (aij40, for all
i; j) when raised to a sufficiently large power (Seneta, 1973).
Furthermore, all adjacency matrices are non-negative
because all aij are greater than or equal to zero.
Weak and disconnected digraphs are decomposable into

a unique set of maximally induced, strong subdigraphs
(Ki, i ¼ 1; . . . ; a, where apn), which are termed strongly

connected components (Bang-Jensen and Gutin, 2001). An
induced subdigraph of D is a subset of nodes in D with all
links that both start and terminate on the node subset,
and a maximally induced subdigraph is the largest one
that is strong. This implies that there is at least one simple
cycle (no repeated medial nodes) that connects all nodes in
a non-trivial strongly connected component. Further,
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adjacency matrices associated with Ki are irreducible. For
example, the digraph in Fig. 1a contains two connected
subdigraphs f1; 2; 3; 4g and f5; 6; 7g. In addition, it can be
partitioned into five strongly connected components
K1 ¼ f1; 2; 3g, K2 ¼ f4g, K3 ¼ f5g, K4 ¼ f6g, K5 ¼ f7g, of
which only K1 is non-trivial. The adjacency matrix
associated with each strongly connected component is
irreducible; the adjacency matrices associated with K1 and
K2 are primitive.

Given these definitions, the Perron–Frobenius theorem
guarantees there is one real eigenvalue equal to or larger
than all other eigenvalues, l1Xli ði ¼ 2; . . . ; nÞ, in irredu-
cible matrices (Berman and Plemmons, 1979; Seneta, 1973).
In the literature l1ðAÞ is alternately referred to as the
dominant eigenvalue, the Perron eigenvalue, and the
spectral radius. Next, we illustrate why l1ðAÞ is a good
measure of the pathway proliferation rate.

As shown by Caswell (2001), we can divide both sides of
Eq. (2) by l1 to obtain

Am

lm
1

¼ w1v1 þ
lm
2

lm
1

w2v2 þ
lm
3

lm
1

w3v3 þ � � � þ
lm

n

lm
1

wnvn. (3)

If A is primitive and irreducible, then l1 is strictly larger
than klik for all i41, where k � k is the norm of � (this is
necessary since li may be complex). Taking the limit
of both sides of Eq. (3) as pathway length increases, we find
that

lim
m!1

Am

lm
1

¼ w1v1. (4)

Thus, smaller eigenvalues influence pathway proliferation
over shorter path lengths (Fig. 1c), but as path length
increases the pathway proliferation rate asymptotically
becomes l1. Consequently, Amþ1=Am

! l1 as m!1

(Hill, unpublished ms.), and l1 is the asymptotic rate of
pathway proliferation in a strongly connected graph with a
primitive adjacency matrix. In addition, the damping ratio

r ¼
l1
kl2k

(5)

characterizes the rate of convergence to l1ðAÞ (Caswell,
2001).

In strong digraphs with an imprimitive and irreducible
adjacency matrix there are cpn eigenvalues with the same
absolute magnitude, and one or more may be complex
(Seneta, 1973). The Perron–Frobenius theorem then
indicates that the common absolute magnitude of the c

eigenvalues will be larger than the other n� c eigenvalues.
In this case, the dominant eigenvalue has a multiplicity of
c, and as m!1 only the c largest eigenvalues will
influence pathway proliferation. Caswell (2001) reports
that these digraphs generate oscillatory dynamics.

Given these mathematical results, each strong compo-
nent Ki of a weak or disconnected digraph will have an
independent rate of pathway proliferation, l1ðKiÞ (read ‘‘l1
of Ki’’). The eigenvalues of a reducible matrix are the union
set of the eigenvalues of the adjacency matrices associated
with strongly connected components (Jain and Krishna,
2003). Thus, the maximum dominant eigenvalue of the
strongly connected components will be the dominant
eigenvalue of the whole digraph. Further, trivial strongly
connected components—those with only one node—will
have a pathway proliferation rate of unity or 0 depending
on whether or not it has a self-loop. Thus, if a digraph is
composed of only trivial strongly connected components
without self-loops, pathway proliferation will not occur.
This is true of all acyclic digraphs, and suggests that we can
use the dominant eigenvalue to detect the presence of cycles
in digraphs (Jain and Krishna, 2003). For this application
there are three cases:
(1)
 if l1ðAÞ ¼ 0, then A has no cycles;

(2)
 if l1ðAÞ ¼ 1, then A has at least one cycle and all cycles

occur in strongly connected components that have only
one simple cycle; and
(3)
 if l1ðAÞ41, then A has more than one simple cycle.
Based on an independent development, Fath (1998)
interpreted similar results as three classes of feedback: (1)
no feedback, (2) simple feedback, and (3) cyclic feedback in
strongly connected networks. Notice that a graph with
l1ðAÞX1 could have a reducible or irreducible adjacency
matrix, while the adjacency matrix of a graph with l1ðAÞ ¼
0 is necessarily reducible with a ¼ n trivial strongly
connected components.
Similarly, as m!1 we can summarize three possibi-

lities for the dominant eigenvalue as a measure of pathway
proliferation in digraphs:
(1)
 if l1ðAÞ ¼ 0, then the number of pathways between two
nodes declines to zero;
(2)
 if l1ðAÞ ¼ 1, then the number of pathways between
nodes in a strongly connected component remains
constant; and
(3)
 if l1ðAÞ40, then the number of pathways between
nodes in at least one strongly connected component
ðKiÞ increases without bound at an asymptotic rate
equal to l1ðKiÞ where maxðl1ðKiÞÞ ¼ l1ðAÞ.
2.2. Bounds and expected values of pathway proliferation

Given that l1ðAÞ is the asymptotic rate of pathway
proliferation in strong digraphs, it would be useful to know
its theoretical bounds and expected value. Again, existing
mathematics provides us with some of these answers.
Matrix theory bounds the dominant eigenvalue of a non-

negative matrix by the minimum and maximum column
(row) sum, which in the context of directed graphs is the
minimum and maximum out-degree (in-degree), where
equality holds only if kin

¼ kout (Berman and Plemmons,
1979; Seneta, 1973). Thus, maxðminðkin

j Þ;minðkout
j ÞÞpl1

ðAÞpminðmaxðkin
j Þ;maxðkout

j ÞÞ. In a strongly connected
digraph with more than one node, all nodes must have at
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Fig. 2. Dominant eigenvalue in random digraphs. (a) Points show the

relationship between dominant eigenvalues l1ðAÞ and link density L=n in
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that as L=n increases it becomes a better predictor of lðAÞ.
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least one and a maximum of n incoming and outgoing
links. Therefore, 1pl1ðAÞpn for a strong digraph. As
stated previously, a trivial component with no self-loops
will have l1ðKiÞ ¼ 0, and a complete graph will have
l1ðAÞ ¼ n (allowing self-loops). Notice that in the binary
matrix A, l1ðAÞ cannot take values between 0 and 1.

With these bounds, we can now examine the expected
value of lðAÞ. In undirected random graphs G with A ¼

ðaijÞ where aij ¼ aji ¼ 1 with probability p ð0opo1Þ and
aij ¼ aji ¼ 0 with probability ð1� pÞ, Juhász proved that

lim
n!1

l1ðAÞ
n
¼ p (6)

(Cvetkoviâc and Rowlinson, 1990). This implies that
l1ðAÞ�np in the limit of large n. Furthermore, given
l1ðAÞ and n we can determine the approximate number of
undirected edges in A. A random graph is not necessarily
connected, but Erdös and Rényi (1959, 1960) showed
that the fraction of nodes connected in a single com-
ponent increases rapidly when the average link density
exceeds unity.

The expected value of l1ðAÞ is sensitive to the assump-
tions of random graphs. For example, Farkas et al. (2001)
and Goh et al. (2001) found that in random graphs with a
power-law distribution of node degrees rather than the
standard Poisson distribution, l1ðAÞ increased with ap-
proximately n1=4. Furthermore, de Aguiar and Bar-Yam
(2005) demonstrated that the expected l1ðAÞ is further
modified if the network topology displays a hierarchic
modularity.

Random graphs are well studied, but properties of
random digraphs are less well known. Some characteristics
are similar to undirected graphs. For example, the in- and
out-degree of random digraphs has a Poisson distribution,
and when link density is greater than unity the expected
size of the largest strongly connected component increases
rapidly (Barbosa et al., 2003; Karp, 1990; Luczak, 1990).
However, we are unaware of results regarding the spectra
of random directed graphs. Therefore, we numerically
verified that l1ðAÞ�np remains plausible for random
directed graphs by determining the largest eigenvalue in
an ensemble of 99,000 random digraphs (50 from each
combination of n ¼ f2; 3; . . . ; 100g and p ¼ f0:05; 0:10;
0:15; . . . ; 1gÞ. Our results indicate that l1ðAÞ�nC ¼ L=n,
where C ¼ L=n2 is an estimate of p (Fig. 2). As either L

increases or n decreases the residual error decreases. We
conclude that in random digraphs, as in undirected random
graphs, l1ðAÞ is largely determined by the combination of
the number of nodes and number of direct connections;
pattern of connections has a minor influence. In digraphs
with a more structured topology—such as those with
power-law in-degree or out-degree distributions or mod-
ularity—we might expect l1ðAÞ to deviate from L=n as it
does in undirected graphs, though this remains to be
explored.

In ecological networks where n is the number of species
(functional groups, etc.) and L is the number of direct
transactions, the rate of pathway proliferation will be
heavily influenced by species richness and direct link
abundance. However, the results of Farkas et al. (2001)
and Goh et al. (2001) suggest that if the degree distribu-
tions are skewed, as has been demonstrated for some food-
webs (Dunne et al., 2002b; Montoya and Sole, 2002;
Williams et al., 2002), or the networks contain other types
of order such as modularity, then the residual error d ¼

jl1ðAÞ � L=nj may be larger than expected from random
graphs.
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We have presented three key results in this section. First,
pathway proliferation occurs only if there is more than one
cycle or feedback in the graph (i.e. it does not occur in
acyclic networks). Second, the dominant eigenvalue of
strongly connected components l1ðKiÞ is the asymptotic
proliferation rate for all nodes within that component, and
this rate can vary between strongly connected components
within a network. Further, the largest l1ðKiÞ of a network
is the dominant eigenvalue for the whole network such that
maxðl1ðKiÞÞ ¼ l1ðAÞ. Third, although topology can be a
factor, the proliferation rate is heavily influenced by the
number of nodes and number of direct links. Additionally,
networks composed of a non-trivial strongly connected
components Ki ði ¼ 1; . . . ; aÞ have a form of structural
modularity that may be functionally significant to the
complex systems being modeled.

3. Modularity and pathway proliferation in food-webs

In this section we build on our conceptual and
mathematical developments by applying the theory to
determine the pathway proliferation rates in 17 of the
largest empirical food-webs currently available, which are
identified in Table 1. Five of the food-webs are terrestrial,
three are from freshwater habitats, and seven represent
marine or oceanic habitats. Following accepted protocol,
original food-webs were modified such that any species or
functional groups with identical predators and prey were
grouped as a ‘‘trophic species’’ or trophospecies to reduce
methodological bias in the data (Cohen et al., 1990; Pimm
Table 1

Topological properties of 17 empirical food-webs

Habitat Food-web Original reference Ta

Terrestrial Coachella Valley Polis, 1991 3

St. Martin Island Goldwasser and Roughgarden, 1993 4

El Verde Rainforest Waide and Reagan, 1996 15

UK Grassland Martinez et al., 1999 7

Scotch Broom Memmott et al., 2000 15

Lake/Pond Skipworth Pond Warren, 1989 3

Bridge Brook Lake Havens, 1992 7

Little Rock Lake Martinez, 1991 18

Stream Canton Creek Townsend et al., 1998 10

Stony Stream Townsend et al., 1998 11

Estuary Chesapeake Bay Baird and Ulanowicz, 1989 3

St. Marks Estuary Christian and Luczkovich, 1999 4

Ythan Estuary, 1991 Hall and Raffaelli, 1991 9

Ythan Estuary, 1996 Huxham et al., 1996 13

Marine Benguela Yodzis, 1998 2

Caribbean Reef, small Opitz, 1996 5

NE US Shelf Link, 2002 8

Taxa refers to the original number of species; n is the number of nodes or troph

of basal (indegree ¼ 0), intermediate (indegree and outdegree 40), and top (

eigenvalue of the entire foodweb; d ¼ jl1ðAÞ � L=nj; PrðdÞ is the fraction of an

that observed in Ki;
�indicates statistically significant PrðdÞ at a ¼ 0:05; #K is th

of species in a non-trivial strongly connected component.
aTopological properties previously reported for these food-webs (Dunne et
et al., 1991; Yodzis, 1982, 1998). These food-webs have
been the subject several network analyses (Dunne et al.,
2002a, b, 2004; Williams et al., 2002; Williams and
Martinez, 2000) which previously reported their number
of trophospecies or nodes n, connectance C ¼ L=n2, the
proportion of basal species %B ðkin

i ¼ 0Þ, proportion of
intermediate species %I ðkin

i ; k
out
i 40Þ, proportion of top

species %T ðkout
i ¼ 0Þ, and link density L=n. We reproduce

this basic network information in Table 1 for com-
parison. In addition, Dunne et al. (2002a, b) showed that
several have skewed degree distributions (i.e. power-law,
exponential).

3.1. Methods

We first identified and characterized all strongly
connected components ðKiÞ, including their rates of path-
way proliferation and damping ratio, in these food-webs.
We envisioned three possible outcomes. If food-webs were
adequately modeled by random digraphs then we would
expect each web to have one strongly connected compo-
nent encompassing most if not all of the nodes with a single
pathway proliferation rate close to link density l1ðAÞ�L=n.
This seemed unlikely given the known skewed degree
distributions and additional evidence that ecological
processes construct non-random topologies (Cohen et al.,
1990; Williams and Martinez, 2000), despite arguments to
the contrary (Kenny and Loehle, 1991). A second
possibility is based on the observation that most early
food-webs were acyclic (Cohen et al., 1990). Thus, the 17
xaa na Ca %Ba %Ia %Ta L=na l1ðAÞ d PrðdÞ #K %K

0 29 0.31 10 90 0 9.03 6.35 2.7 0:001� 2 59

4 42 0.12 14 69 17 4.88 0.00 4.9 0:001� 0 0

6 155 0.06 18 69 13 9.74 10.25 0.5 0:001� 1 45

5 61 0.03 18 69 13 1.59 0.00 1.6 0:001� 0 0

4 85 0.03 1 40 59 2.62 1.00 1.6 0:001� 0 0

5 25 0.32 4 92 4 7.88 3.00 4.9 0:001� 2 20

5 25 0.17 32 68 0 4.28 2.00 2.3 0:001� 1 8

1 92 0.12 13 86 1 10.84 6.20 4.6 0:001� 2 26

8 102 0.07 53 22 25 6.83 1.00 5.8 0:001� 0 0

2 109 0.07 56 27 17 7.61 1.00 6.6 0:001� 0 0

3 31 0.07 16 52 32 2.19 1.00 1.2 0:001� 0 0

8 48 0.10 10 80 10 4.60 1.00 3.6 0:001� 0 0

2 83 0.06 9 54 37 4.76 1.62 3.1 0:001� 1 2

4 124 0.04 4 56 40 4.67 1.62 3.1 0:001� 1 2

9 29 0.24 7 93 0 7.00 3.00 4.0 0:001� 2 21

0 50 0.22 6 94 0 11.12 8.63 2.5 0:001� 2 60

1 79 0.22 3 94 4 17.76 4.87 12.9 0:001� 2 39

ospecies; C ¼ L=n2 is connectance; %B, %I , and %T are the proportions

outdegree ¼ 0) trophospecies; L=n is link density; l1ðAÞ is the dominant

ensemble of 1001 random digraphs in which d is greater than or equal to

e number of non-trivial strongly connected components; %K is the percent

al., 2002a, 2004; Williams and Martinez, 2000).
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food-webs in our study, all developed since 1990, might
also be acyclic digraphs with no non-trivial strongly
connected components. In this case, pathway proliferation
would not occur and l1ðAÞ ¼ 0. A final possibility is that
the food-webs would tend to have one or more strongly
connected components and multiple pathway proliferation
rates. This outcome would support the hypothesized
modularity of ecological systems which is thought to
increase system stability (Krause et al., 2003; May, 1972;
Pimm and Lawton, 1980; Yodzis, 1982).

In Section 2 we hypothesized that the absolute difference
between the dominant eigenvalue and its expected value in
random digraphs ðL=nÞ might be a useful indicator of the
significance of network topology. To assess this hypothesis,
we used Monte Carlo simulations to determine if d ¼

jl1ðAÞ � L=nj was larger than expected. We had two scales
of analysis: whole food-web and non-trivial strongly
connected components. For both, we constructed 1001
uniform random digraphs with n nodes, where each
possible link was connected with probability p equal to
the original network’s connectivity ðp ¼ CÞ. We assessed
statistical significance by determining the fraction of
random digraphs in which d was equal to or greater than
observed in our network of interest, PrðdÞ. Assuming a
significance level of a ¼ 0:05, PrðdÞo0:05 implies d is
statistically significant.

When applied to the entire food-web, a significant
difference with the null model implies that topological
factors beyond species and link richness are significant in
determining the whole system dominant eigenvalue. This
could be the size or frequency of strongly connected
components within the network, as suggested by the
analysis in Section 2, or perhaps a skewed degree
distribution. If the food-webs had more than one non-
trivial component, then we expected the deviation to be
large.

When applied to strongly connected components, a
significant deviation of d also indicates the importance of
network topology. However, given that they are irreducible
by definition, a significant deviation of d within a
component must indicate the significance of another
element of topology, such as the degree distribution.

3.2. Results

Food-webs included in this study range in size from 25 to
155 trophospecies and 3% to 32% connectance (Table 1).
They tend to have a large proportion of intermediate
species (i.e. those with kin

j 40 and kout
j 40), although the

two stream food-webs are notable exceptions. Ten of the 17
food-webs examined contained at least one non-trivial
strongly connected component; six had two. Five of the
remaining food-webs had a dominant eigenvalue of unity,
implying that at least one node contained a self-loop. Our
results reveal that the majority of these food-webs have at
least one directed cycle, contrary to earlier food-web theory
(Cohen et al., 1990).
While the majority of the food-webs have a modular
organization that is based on strongly connected compo-
nents, the proportion of species involved in the modules is
variable. In food-webs that have a non-trivial strongly
connected component, the proportion of the original nodes
involved ranges from 2% in the two Ythan Estuary food-
webs to 60% in the Caribbean Reef model. Notice that the
definition of a strongly connected component bans nodes
that have no inputs or no outputs, which excludes basal
species ðkin

j ¼ 0Þ and top consumer species ðkout
j ¼ 0Þ.

Therefore, the total number of species in strongly
connected components is limited by the number of
intermediate species. This may be a factor in why the two
stream food-webs and the Scotch Broom food-web contain
no non-trivial components.
The absolute difference between the dominant eigenva-

lue of the entire food-web and its expected value based on
random digraphs of the appropriate size and connectance
ðd ¼ jl1ðAÞ � L=njÞ ranged from a minimum of 0.5 for the
El Verde rainforest to a maximum of 12.9 for the NE US
shelf food-web (Table 1). In all cases, this difference was
significantly different from the random digraph null model,
indicating that topology is a significant factor in determin-
ing l1ðAÞ. This result is consistent with the presence of one
or more small non-trivial components and acyclic digraphs.
Our results provide another line of evidence suggesting that
the ecological processes that create food-webs lead to more
ordered network topologies; random digraphs are not good
models for these systems.
Inspection of the strongly connected components reveals

a diversity of topologies as shown in Table 2. The largest
strongly connected component, with 70 trophospecies,
occurs in the El Verde rainforest model; although it is the
least well connected (13%), it still has the largest rate of
pathway proliferation ðl1ðAÞ ¼ 10:25Þ. In contrast, 10 of
the 16 strongly connected components have four or fewer
species. Five of the strongly connected components contain
only two trophospecies, requiring a single simple cycle of
path length 2 (e.g. j! i! j). While the two strongly
connected components in the Coachella Valley, Skipworth
Pond, and Benguela are about the same size, one of the two
components in Little Rock Lake, Caribbean Reef, and NE
US shelf is substantially larger than the other. Table 3 lists
the trophospecies in the two strongly connected compo-
nents of the Coachella Valley.
The dominant eigenvalues of all strongly connected

components have a multiplicity of one, so the adjacency
matrices associated with the component subdigraphs are
primitive. Therefore, the dominant eigenvalues represent
the strongly connected component asymptotic rates of
pathway proliferation. These range from 1.62 in strongly
connected components of the two Ythan Estuary food-
webs to 10.25 in the large El Verde rainforest strongly
connected component and generally increase with link
density as would be expected in random digraphs.
However, half of the strongly connected components have
a statistically significant difference between the dominant
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Table 2

Topological properties of strongly connected components in 17 empirical food-webs

Model Ki n L C L=n l1ðKiÞ multðl1Þ r d PrðdÞ

Coachella Valley 1 11 71 0.59 6.45 6.35 1 3.40 0.1 0:001�

2 6 22 0.61 3.67 3.56 1 3.56 0.1 0:001�

El Verde Rainforest 1 70 633 0.13 9.04 10.25 1 2.43 1.2 0:001�

Skipworth Pond 1 3 9 1.00 3.00 3.00 1 — 0.0 1.001

2 2 4 1.00 2.00 2.00 1 — 0.0 1.001

Bridge Brook Lake 1 2 4 1.00 2.00 2.00 1 — 0.0 1.001

Little Rock Lake 1 21 167 0.38 7.95 6.20 1 2.42 1.7 0:001�

2 3 9 1.00 3.00 3.00 1 — 0.0 1.001

Ythan Estuary, 1991 1 2 3 0.75 1.50 1.62 1 2.62 0.1 0.212

Ythan Estuary, 1996 1 2 3 0.75 1.50 1.62 1 2.62 0.1 0.226

Benguela 1 3 9 1.00 3.00 3.00 1 — 0.0 1.001

2 3 7 0.78 2.33 2.25 1 4.05 0.1 0:001�

Caribbean Reef, small 1 2 3 0.75 1.50 1.62 1 2.62 0.1 0.217

2 28 244 0.31 8.71 8.63 1 4.11 0.1 0:001�

NE US Shelf 1 4 11 0.69 2.75 2.88 1 4.41 0.1 0:001�

2 27 243 0.33 9.00 4.87 1 1.69 4.1 0:001�

Ki indicates the non-trivial strongly connected component number; n is the number of nodes (trophospecies), L is the number of links; C ¼ L=n2 is

connectance, L=n is the link density, l1ðKiÞ is the dominant eigenvalue of Ki , mult(l1) is the multiplicity of the dominant eigenvalue, r ¼ l1ðKiÞ=kl2ðKiÞk is

the damping ratio (– indicates r is undefined because kl2ðKiÞk ¼ 0), d ¼ jl1ðAÞ � L=nj is the absolute difference between the dominant eigenvalue and link

density, PrðdÞ is the fraction of an ensemble of 1001 random digraphs in which d is greater than or equal to that observed in Ki , and
�indicates statistically

significant PrðdÞ at a ¼ 0:05.

Table 3

Trophospecies in the two non-trivial strongly connected components of

the Coachella Valley food-web

K1 K2

Primarily herbivorous mammals

and birds

Small arthropod predators

Small omnivorous mammals and

birds

Medium arthropod predators

Primarily carnivorous lizards Large arthropod predators

Primarily carnivorous snakes Facultative arthropod predators

Large primarily predacious birds Life-history arthropod omnivore

Large primarily predacious

mammals

Spider parasitoids

Primary parasitoids

Hyperparisitoids

Predacious mammals and birds

Arthropodivorous snakes

Primarily arthropodivorous lizards
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eigenvalue and link density including Coachella Valley
(K1 and K2), El Verde Rainforest (K1), Little Rock Lake
(K1), Benguela (K2), Caribbean Reef (K2), and NE US shelf
(K1 and K2). The topological arrangement of species and
links in these three strongly connected components
influences their rate of pathway proliferation; the others
are largely determined by their species and link richness.

The damping ratio defined in Eq. (5) is an index of the
speed of convergence to the asymptotic rate of pathway
proliferation; a larger ratio indicates faster convergence.
Five of the strongly connected components are completely
connected. They have a pathway proliferation rate equal to
their trophospecies richness and an undefined damping
ratio because their second eigenvalues are zero. In these
cases the asymptotic rate of pathway proliferation is
achieved instantaneously. The other damping ratios range
from 1.69 in K2 of the NE US Shelf to 4.41 in K1 of the
same food-web. Transient dynamics of the pathway
proliferation rate, determined by the smaller eigenvalues,
are more influential in NE US shelf (K2). Its pathway
proliferation rate does not converge until a pathway length
of nearly 22, while in NE US shelf (K1) the proliferation
rate converges by a pathway length of 8.
In summary, the majority of the food-webs we examined

contained at least one non-trivial strongly connected
component. Six food-webs had two non-trivial strongly
connected components; none had more than two. The
proportion of species involved in a strongly connected
component ranged from 2% to 60%. In all cases, the
difference between the dominant eigenvalue of the food-
web and the expected value (L=n) in a random network was
significant. This difference occurs because the topology of
food-webs is non-random; thermodynamic processes and
species characteristics (e.g. the species niche) combine to
form non-random structures (Chase and Leibold, 2003).
Within the strongly connected components, the rate of
pathway proliferation ranged from 1.62 to 10.25 and half
were indistinguishable from random graphs based on the
expected rate of pathway proliferation.
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4. Discussion

As with any analysis of network models that reveals
previously hidden structural patterns, we are left with two
questions. First, what, if any, significance do these patterns
hold for our systems of interest? Are strongly connected
components and pathway proliferation simply another
pretty pattern, another network or food-web statistic to
report, or do they impart some functional significance? The
second question cannot be divorced from the first; what
system processes might create these structural patterns?
Are there ecological processes or forces that might lead
to the development of these structures? These are not
easy questions to answer, but in this section we attempt
to address them for the presence of strongly connected
components and pathway proliferation in ecological
networks.

Strongly connected components introduce a form of
modularity into network models, where modularity is
defined as a hierarchical system subdivision into more or
less interacting subsystems. Several types of modularity
have been proposed in ecological systems. Building on
earlier ideas in general systems theory that linked
hierarchical organization to system stability (e.g. Simon,
1962), May (1973) hypothesized that ecosystems have
modular structures. He found that the Lyapunov stability
of randomly assembled ecosystems tended to be greater
when the species were partitioned into blocks of interacting
species with few if any connections to other blocks. Pimm
(1979, p. 145) termed these blocks of species ‘‘compart-
ments’’, stating that they are ‘‘...characterized by strong
interactions within compartments, but weak interactions
among compartments’’. Pimm and Lawton (1980) con-
cluded from a study of binary empirical food-webs that,
while there was evidence species were grouped into
subsystems largely by habitat, compartmentalization as
defined by Pimm was an uncommon phenomenon. They
noted, however, that a complete test of the hypothesis
would require knowledge of the strength of interactions,
which was absent in their food-web models. It is also
possible that they were unable to identify compartmenta-
lization in their food-webs because their models exclude
detrital recycling. However, Neutel et al. (2002) showed
that even without detrital recycling, long, weak links
enhanced system stability.

Yodzis (1982) remarked that modular organization was
an old idea in ecology, citing the guild concept (Root, 1967)
as an example. He applied the dominant clique idea from
graph theory to identify another type of modularity in
food-webs. He defined ‘‘a clique as a set of species in a
given ecosystem with the property that every pair in the set
has some food resource in common, and . . . a dominant
clique as a clique which is contained in no other clique’’
(Root, 1967, p. 552). More recently, Krause et al. (2003)
used a methodology developed to identify cohesive
subgroups in social network analysis to classify another
type of modularity in food-webs. They demonstrated that
this type of organization increased system stability to
species deletion by localizing the effect within a module. In
addition, Allesina et al. (2005) found four or more modules
based on strongly connected components in 17 network
models of carbon flux. The four modules usually grouped
into four types: inputs, outputs, dissipation, and species
and nutrient pools. Their work is the most similar to that
presented in this paper, but there are two important
differences. First, we examined different types of ecological
networks. They examined ecosystem flow networks, while
we restricted our analysis to food-webs. Second, we
considered inputs, outputs, and dissipation to be external
to the system and therefore we could not identify these as
separate modules.
The dominant ecological hypothesis is that food-web or

ecosystem modularity increases overall system stability by
localizing interactions within modules. Given the static,
binary, presence–absence information of food-webs in our
study we were unable to meaningfully test this hypothesis;
stability is inherently a dynamic concept. Known issues
with food-web model construction further make this
hypothesis difficult to resolve (Cohen et al., 1993; Polis
and Strong, 1996). Empirical food-web models usually do
not indicate interaction strength or the temporal and
spatial variation of the interactions, as these details are
expensive to acquire.
Despite the challenge of assessing their effect on system

stability, strongly connected components in ecological
networks appear to be important functional elements of
system organization and provide new insights about species
participating in them. By definition (Section 2), there is
minimally one simple cycle that encircles all nodes in the
strongly connected component. This provides at least one
channel for cybernetic feedback (positive or negative) to
propagate among species in the module (DeAngelis et al.,
1986; Patten, 1959; Patten and Odum, 1981). Furthermore,
in food-webs it is reasonable to assume that each predatory
species directly benefits by its consumption of prey. This
establishes an indirect mutualism that spans the strongly
connected component, and provides the necessary condi-
tions for the strongly connected components of food-webs
to function as autocatalytic cycles—systems that catalyse
their own production (Maynard Smith and Szathmâry,
1995; Ulanowicz, 1997). Autocatalytic cycles are an
essential element of metabolism in chemical and living
systems and may have played a role in the origin of life
(Maynard Smith and Szathmâry, 1995). Maynard Smith
and Szathmâry (1995) describe autocatalytic cycles as a
force for cooperation among the member species and
efficient information integrators.
Ulanowicz (1997) identifies several emergent properties

that autocatalytic cycles may possess, including centripe-
tality, persistence, and autonomy. Centripetality is the
tendency of the cycle to attract more of the energy–matter
flux of the system. If any member species becomes more
efficient at using its resources or better able to acquire new
resources such that its population increases, this positive
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change tends to cascade through the module, collectively
benefiting the populations of all species involved. Auto-
catalytic cycles tend to persist because their general form
can be maintained in a system despite fluctuations in the
interaction strengths and possible element replacement. In
food-webs this implies that when a trophically similar
species is introduced to the system, if it is more efficient or
in some way ecologically more competitive, it may wholly
replace an existing species in the autocatalytic cycle, but the
cycle remains. Finally, autocatalytic cycles can establish a
degree of autonomy because species in the cycle can
actively influence at least a portion of their input
environment. In this sense, species in strongly connected
components of food-webs are involved in ecosystem
engineering (Jones et al., 1997) and niche construction
(Laland et al., 1999; Odling-Smee et al., 2003). Ulanowicz
(1986, 1997) further argues that the autocatalytic nature of
cycles in ecosystems makes them a principal agent in
ecosystem growth and development.

Maynard Smith and Szathmâry (1995) remarked that
autocatalytic cycles are sensitive to cheaters or parasites
that feed off the strongly connected component without
participating in the cycle. Top predators feeding on species
in a strongly connected component or a downstream
strongly connected component might function as parasites
in this sense. Perhaps this is why strongly connected
components do not occur in all the food-webs analysed.
This and the tendency for centripetality may explain
why there are fewer than three strongly connected
components in these food-webs. However, we are unable
to assess these possibilities with these data because the
differences may simply reflect disparities in food-web
modeling decisions.

Pathway proliferation rates of strongly connected
components provide additional information about these
modules. Each additional link in a strongly connected
component beyond those that form the defining cycle
introduces another embedded simple cycle. This lowers the
maximal distance between nodes in the module, increases
the potential pathways for energy–matter flux, tends to
increase the rate of pathway proliferation, and leads to the
unbounded growth of pathways as length increases. In
some cases, the rate of pathway proliferation will not
increase as expected with the number of links. For
example, half of the strongly connected components
identified in our food-webs had pathway proliferation
rates that were significantly different from the expected rate
based on random graphs with a Poisson degree distribu-
tion. This suggests that module topology differs from what
we would expect from a random generating process.

As mentioned earlier, we expected the ecological
processes forming food-webs to generate non-random
structures. Species characteristics such as metabolic re-
quirements, food preferences, capture ability, and handling
time, as well as other niche requirements and natural
history constraints should directly influence the choices of
‘‘who eats whom’’ and how much. In addition, the
emergent properties of autocatalytic cycles and ecosystems
more generally may provide whole-system constraints.
Perhaps the interesting question is not why the eight

strongly connected components did not match the random
expectation, but why the other half did? Notice that the
strongly connected components with non-random topolo-
gies were the largest modules, while the eight strongly
connected components with topologies indistinguishable
from random digraphs involved only two or three
trophospecies. The universe of possible topologies is much
smaller in these small and well-connected ð0:75pCp1Þ
modules, making the ecologically created topologies
reflected in the food-webs more likely. Five of these
modules were completely connected, generating only one
possible arrangement. The eight strongly connected com-
ponents with apparently non-random topologies were less
well connected ð0:13pCp0:78Þ, generating a much larger
universe of possible topologies. In six cases the pathway
proliferation rate was significantly less than expected, but
in the large strongly connected component of the El Verde
rainforest and the smaller module of the Caribbean Reef,
the pathway proliferation rate was more than expected. At
this point, we are unable to provide a satisfactory
explanation for these differences.
In our discussion thus far, we have been interchanging

food-webs and ecosystems. It is important to recognize,
however, that food-webs are a subset of a broader class of
ecosystem models of energy–matter flow. Food-webs are
generally defined by the relation ‘‘who eats whom’’ that is
one process generating energy–matter flux, while ecosystem
flow–storage models typically trace a conserved flow unit
(e.g. energy, nitrogen, phosphorus) through the system,
regardless of the process producing the flow. Thus, non-
trophic ecological processes such as excretion and death
are captured in flow–storage models, revealing a different
picture of ecosystem organization with additional cycling.
Pathway proliferation influences the development and

significance of indirect flows in ecosystem flow–storage
models. Indirect flows are an important aspect of the
ecological significance of the strongly connected compo-
nents, so here we take a closer look. Indirect flows are
derived from two fundamentally distinct types of path-
ways: chains (e.g. 5! 6! 7 in Fig. 1a) and cycles (e.g.
1! 3! 1 in Fig. 1a). Indirect flows in chains are limited
by transfer efficiencies and chain length. In cycles, the
number and length of pathways are unlimited such that
indirect flows are only limited by transfer efficiencies
reflecting energy–matter dissipation and export. As eco-
systems are open thermodynamic systems, shorter indirect
pathways individually will tend to carry larger indirect
flows than longer indirect pathways. A faster rate of
pathway proliferation l1ðAÞ implies that there will be more
shorter indirect pathways, increasing the possibility that
the magnitude of indirect flows will surpass that of direct
flows. Thus, within a strongly connected component the
large number of indirect pathways will tend to carry a large
fraction of the flow between species (nodes).
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More generally, l1ðAÞ indicates the potential for direct
and indirect energy, matter, and information transmission
between compartments in a strongly connected component.
Realized transmission rates are dependent on the realized
use of each pathway. Previous ecosystem network analyses
reveal some of the system-level consequences of differential
pathway use (Fath, 2004; Fath and Patten, 1998, 1999;
Higashi and Patten, 1989; Patten, 1985b; Ulanowicz, 1986),
but there is much left to learn about this subject. The
interplay of this potential and realized network structure is
an interesting, important topic for understanding the
organization and transformation of complex adaptive
systems like ecosystems.

We conclude that the strongly connected components
and pathway proliferation are ecologically relevant phe-
nomena because they provide novel insights about the
system of interest. Without knowing the strength of
interactions or energy–matter flux rates, the presence of
these structural features suggests groups of species
functionally integrated by indirect effects mediated by
autocatalytic cycles. They portend the possibility of
integral species relationships that are shifted toward more
positive associations and the possibility of the dominance
of indirect flows. In some cases, apparent negative
interactions such as predation or competition may become
more positive through indirect interactions mediated by the
autocatalytic cycles of the strongly connected components.
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Maynard Smith, J., Szathmâry, E., 1995. The Major Transitions in

Evolution. W.H. Freeman Spektrum, New York.

Memmott, J., Martinez, N.D., Cohen, J.E., 2000. Predators, parasitoids

and pathogens: species richness, trophic generality and body sizes in a

natural food web. J. Anim. Ecol. 69, 1–15.

Montoya, J.M., Sole, R.V., 2002. Small world patterns in food webs.

J. Theor. Biol. 214, 405–412.
Moreno, J.L., Jennings, H.H., 1938. Statistics of social configurations.

Sociometry 1, 342–374.

Müller, F., Leupelt, M., 1998. Eco Targets, Goal Functions, and

Orientors. Springer, New York.

Neutel, A.M., Heesterbeek, J.A.P., de Ruiter, P.C., 2002. Stability in real

food webs: weak links in long loops. Science 296, 1120–1123.

Newman, M.E.J., 2001a. Scientific collaboration networks. I. Network

construction and fundamental results. Phys. Rev. E 6401, 6131.

Newman, M.E.J., 2001b. The structure of scientific collaboration net-

works. Proc. Natl Acad. Sci. USA 98, 404–409.

Newman, M.E.J., 2002. Random graphs as models of networks. In:

Bornholdt, S., Schuster, H.G. (Eds.), Handbook of Graphs and

Networks. Wiley-VCH, Berlin.

Newman, M.E.J., 2003. The structure and function of complex networks.

SIAM Rev. 45, 167–256.

Odling-Smee, F.J., Laland, K.N., Feldman, M.W., 2003. Niche Construc-

tion: The Neglected Process in Evolution. Princeton University Press,

Princeton, NJ.

Opitz, S., 1996. Trophic interactions in Caribbean coral reefs. Technical

Report 43, ICLARM.

Patten, B.C., 1959. An introduction to the cybernetics of the ecosystem:

the trophic dynamic aspect. Ecology 40, 221–231.

Patten, B.C., 1983. On the quantitative dominance of indirect effects in

ecosystems. In: Lauenroth, W.K., Skogerboe, G.V., Flug, M. (Eds.),

Analysis of Ecological Systems: State-of-the-Art in Ecological Model-

ling. Elsevier, Amsterdam, pp. 27–37.

Patten, B.C., 1985a. Energy cycling in the ecosystem. Ecol. Modelling 28,

1–71.

Patten, B.C., 1985b. Energy cycling, length of food chains, and direct

versus indirect effects in ecosystems. Can. Bull. Fish. Aquat. Sci. 213,

119–138.

Patten, B.C., Odum, E.P., 1981. The cybernetic nature of ecosystems. Am.

Nat. 118, 886–895.

Patten, B.C., Bosserman, R.W., Finn, J.T., Cale, W.G., 1976. Propagation

of cause in ecosystems. In: Patten, B.C. (Ed.), Systems Analysis and

Simulation in Ecology, vol. IV. Academic Press, New York,

pp. 457–579.

Patten, B.C., Richardson, T.H., Barber, M.C., 1982. Path analysis of a

reservoir ecosystem model. Can. Water Resour. J. 7, 252–282.

Patten, B.C., Higashi, M., Burns, T.P., 1990. Trophic dynamics in

ecosystem networks: significance of cycles and storage. Ecol. Model-

ling 51, 1–28.

Pimm, S.L., 1979. The structure of food webs. Theor. Popul. Biol. 16,

144–158.

Pimm, S.L., 1982. Food Webs. Chapman & Hall, New York.

Pimm, S.L., Lawton, J.H., 1977. On feeding on more than one trophic

level. Nature 275, 542–544.

Pimm, S.L., Lawton, J.H., 1980. Are food webs divided into compart-

ments? J. Anim. Ecol. 49, 879–898.

Pimm, S.L., Lawton, J.H., Cohen, J.E., 1991. Food web patterns and their

consequences. Nature 350, 669–674.

Polis, G.A., 1991. Complex trophic interactions in deserts: an empirical

critique of food-web theory. Am. Nat. 138, 123–155.

Polis, G.A., Strong, D.R., 1996. Food web complexity and community

dynamics. Am. Nat. 157, 813–846.

Ponstein, J., 1966. Matrices in Graph and Network Theory. Van Gorcum

and Company.

Post, D.M., 2002. The long and short of food-chain length. Trends Ecol.

Evol. 17, 269–277.

Post, D.M., Pace, M.L., Hairston, N.G., 2000. Ecosystem size determines

food-chain length in lakes. Nature 405, 1047–1049.

Price, D., 1965. Networks of scientific papers. Science 149, 510–515.

Root, R.B., 1967. The niche exploitation pattern of the blue-gray

gnatcatcher. Ecol. Monogr. 37, 317–350.

Seneta, E., 1973. Non-negative Matrices: An Introduction to Theory and

Applications. Wiley, New York.

Simon, H.A., 1962. The architecture of complexity. Proc. Am. Philos. Soc.

106, 467–482.



ARTICLE IN PRESS
S.R. Borrett et al. / Journal of Theoretical Biology 245 (2007) 98–111 111
Townsend, C.R., Thompson, R.M., McIntosh, A.R., Kilroy, C., Edwards,

E., Scarsbrook, M.R., 1998. Disturbance, resource supply, and food-

web architecture in streams. Ecol. Lett. 1, 200–209.

Ulanowicz, R.E., 1986. Growth and Development: Ecosystems Phenom-

enology. Springer, New York.

Ulanowicz, R.E., 1997. Ecology, The Ascendent Perspective. Columbia

University Press, New York.

Ulanowicz, R.E., Wolff, W.F., 1991. Ecosystem flow networks—loaded

dice? Math. Biosci. 103, 45–68.

Waide, R.B., Reagan, W.B., 1996. The Food Web of a Tropical

Rainforest. University of Chicago Press, Chicago, IL.

Warren, P.H., 1989. Spatial and temporal variation in the structure of a

fresh-water food web. Oikos 55, 299–311.

Watts, D.J., 1999. Small Worlds: The Dynamics of Networks Between

Order and Randomness. Princeton University Press, Princeton, NJ.
Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of ‘‘small-world’’

networks. Nature 393, 440–442.

Whipple, S.J., 1998. Path-based network unfolding: a solution for the

problem of mixed trophic and non-trophic processes in trophic

dynamic analysis. J. Theor. Biol. 190, 263–276.

Williams, R.J., Berlow, E.L., Dunne, J.A., Barabási, A.-L., Martinez,

N.D., 2002. Two degrees of separation in complex food webs. Proc.

Natl Acad. Sci. USA 99, 12913–12916.

Williams, R.J., Martinez, N.D., 2000. Simple rules yield complex food

webs. Nature 404, 180–183.

Yodzis, P., 1982. The compartmentation of real and assembled

ecosystems. Am. Nat. 120, 551–570.

Yodzis, P., 1998. Local trophodynamics and the interaction of marine

mammals and fisheries in the Benguela ecosystem. J. Anim. Ecol. 67,

635–658.


	Functional integration of ecological networks through �pathway proliferation
	Introduction and motivation
	Pathway proliferation
	Quantifying pathway proliferation
	Bounds and expected values of pathway proliferation

	Modularity and pathway proliferation in food-webs
	Methods
	Results

	Discussion
	Acknowledgments
	References


