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Abstract

Large-scale structural patterns commonly occur in network models of complex systems including a skewed node degree distribution
and small-world topology. These patterns suggest common organizational constraints and similar functional consequences. Here, we
investigate a structural pattern termed pathway proliferation. Previous research enumerating pathways that link species determined that
as pathway length increases, the number of pathways tends to increase without bound. We hypothesize that this pathway proliferation
influences the flow of energy, matter, and information in ecosystems. In this paper, we clarify the pathway proliferation concept,
introduce a measure of the node—node proliferation rate, describe factors influencing the rate, and characterize it in 17 large empirical
food-webs. During this investigation, we uncovered a modular organization within these systems. Over half of the food-webs were
composed of one or more subgroups that were strongly connected internally, but weakly connected to the rest of the system. Further,
these modules had distinct proliferation rates. We conclude that pathway proliferation in ecological networks reveals subgroups of

species that will be functionally integrated through cyclic indirect effects.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

Large-scale structural patterns have been uncovered in
network models of complex systems, suggesting the
possibility of common organizational constraints and
similar functional consequences. Network models are
mathematical graphs composed of nodes and undirected
edges or directed arcs that connect the nodes. For example,
in a social network nodes might represent individuals in a
community and the edges or links could represent a social
relationship between the individuals such as collaboration
(Newman, 2001a, b). In a model of the World Wide Web,
web pages are nodes connected by hyperlinks (Albert et al.,
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1999; Barabasi and Albert, 1999). Ecologists use network
models in many ways, including to represent trophic
relations in food-webs and more generally energy—matter
flux in ecosystems (Cohen et al., 1990; Higashi and Burns,
1991; Margalef, 1963; Pimm, 1982). In these networks,
species or functional groups form the node set while the
presence of energy and matter transfers and transforma-
tions are represented by links.

Traditionally, complex systems have been modeled using
random graphs (Erdés and Rényi, 1959, 1960; Gardner
and Ashby, 1970; May, 1972). However, ecologists have
demonstrated that random graphs are inadequate models
of ecological systems; food-web and ecosystem models
often contain structures not commonly found in random
graphs (Cohen et al., 1990; DeAngelis, 1975; Lawler, 1978;
Pimm, 1979, 1982; Pimm et al.,, 1991; Ulanowicz and
Wolff, 1991). In food-webs, these hypothesized structures
include short food-chain lengths (Pimm and Lawton, 1977;
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Post, 2002) and little or no cycling (Cohen et al., 1990). In
addition, several forms of modularity—hierarchic com-
partmentalization into subsystems—have been hypothe-
sized for food-webs and ecosystems (Allen and Starr, 1982;
May, 1972; Pimm, 1979; Pimm and Lawton, 1980; Yodzis,
1982). Furthermore, Ulanowicz and Wolff (1991) demon-
strated that random networks (based on the Poisson,
uniform, Gaussian, negative exponential, and log-normal
probability distribution functions) failed to capture the
distribution of connections in real ecosystems. Ecologists
hypothesize that these structural differences exist because
ecological systems are shaped and constrained by thermo-
dynamic laws and natural history (Jergensen et al., 1992;
Lawler, 1978; Miiller and Leupelt, 1998; Williams and
Martinez, 2000).

Likewise, investigations of other types of complex
systems have identified a number of distinctive patterns
common in complex systems not found in purely random
graphs (Albert and Barabasi, 2002; Moreno and Jennings,
1938; Newman, 2002, 2003; Price, 1965). For example, the
distribution of node degree (i.e. the number of edges (links)
incident to a node) is often skewed in models of complex
systems, following an exponential distribution or a power-
law distribution rather than the Poisson distribution of
random graphs. The power-law distribution was found in
the World Wide Web (Barabasi and Albert, 1999),
metabolic networks (Jeong et al., 2000), and some but
not all food-webs (Dunne et al., 2002b; Montoya and Sole,
2002). The power-law degree distribution implies that there
are a large number of nodes with very few connections,
while a few nodes have a large number of connections
(Barabasi, 2002). This topology tends to increase network
robustness to random node or edge deletion, while making
it more sensitive to targeted attacks (Albert et al., 2000;
Dunne et al., 2002b). The small-world pattern is another
commonly found topology (Watts, 1999; Watts and
Strogatz, 1998). In small-world networks, the degree of
node clustering is larger and the maximum distance (where
distance is the shortest path between two nodes) is lower
than expected from random graphs. This arrangement
tends to increase the transmission speed of diseases, energy,
matter, and information through networks. The largest
distance in food-web graphs tends to be small, but the
degree of clustering varies (Dunne et al., 2002a).

Pathway proliferation is another large-scale topological
characteristic of networks, with implications for energy,
matter, and information transmission. It is the tendency for
the number of pathways in a network to increase
geometrically without bound as pathway length increases.
Patten and colleagues (Patten, 1985a, b; Patten et al., 1982)
first observed this tendency in small, well-connected
ecosystem models during the early development of
ecosystem network analysis. More recently, Fath (1998)
and Borrett and Patten (2003) showed that the rate of
pathway proliferation is variable among networks. This is
significant because the pathway proliferation rate char-
acterizes how quickly the number of indirect pathways

increases, and thus, the number of pathways available for
interactions. Food-web investigations often emphasize the
shortest pathways, assuming that most significant interac-
tions occur over these routes (e.g. Caldarelli et al., 1998;
Post et al., 2000). However, previous results from Network
Environ Analysis, an environmental application and
extension of economic Input—Output Analysis, indicate
that flows over longer indirect pathways can be significant
or even dominant constituents of total system throughflow
(Higashi and Patten, 1986, 1989; Patten, 1983), which
is a measure of whole system activity. This result has
important implications for trophodynamics (Burns et al.,
1991; Patten et al., 1990; Whipple, 1998) and biogeochem-
ical cycling in ecosystems (Borrett et al., 2006; Finn, 1980;
Patten et al., 1976). Given the possible significance of
indirect pathways in network models of conservative
transport systems like ecosystems, it is critical to under-
stand the network characteristics influencing the pathway
proliferation rate.

In this paper, we clarify the pathway proliferation
concept, describe factors influencing the proliferation rate,
and characterize pathway proliferation rates in 17 large
empirical food-webs. In Section 2 we review relevant
mathematics to build a better understanding of pathway
proliferation. In Section 3 we apply this understanding to
17 food-web models drawn from the literature. This
analysis reveals a type of modularity in some of the food-
webs, lending support to the hypothesis that food-webs
have a modular structure (Allesina et al., 2005; Krause
et al., 2003; May, 1972; Pimm and Lawton, 1980; Yodzis,
1982). We conclude by summarizing our findings, discuss-
ing their relevance for ecological systems, and suggesting
next steps along this research path.

2. Pathway proliferation

Although Patten and colleagues (Patten, 1985a, b; Patten
et al., 1982) introduced pathway proliferation into the
ecological literature over two decades ago, it is not well
understood. In this section, we synthesize mathematical
results from graph theory and matrix algebra to determine
a method for quantifying the node-node pathway pro-
liferation rate, and to identify the bounds and expected
value of the rate. In addition, we uncover the possibility of
differing rates of pathway proliferation for modules within
a network.

Network models of complex systems are mathematically
graphs which can be directed or weighted (Bang-Jensen
and Gutin, 2001; Ponstein, 1966). A graph G is specified by
a set of n nodes and e unoriented edges (0<e<n(n — 1)/
2+ n), where edges indicate an undirected relationship
between two nodes. A directed graph (digraph) D is also
specified by a set of n nodes, but instead of edges it has L
oriented arcs or links (0<L<n?). Digraph structure is
partially characterized by two connectivity measures,
connectance C = L/n* and link density L/n, which are
common metrics in the food-web literature (Cohen et al.,
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1990; Martinez, 1991). Edges and links can be assigned
weights to represent the relationship strength.

In this paper, we focus on simple unweighted digraphs,
where simple implies no more than one link from one node
to any other. We do this for two reasons. First, directed
graphs are often appropriate for ecological applications as
many ecological processes are oriented (e.g. predation and
excretion generate energy and matter flows from one
ecosystem element to another). Second, while the mathe-
matics described in this paper may apply to non-simple and
weighted graphs, our interest here is primarily network
structure as it is a necessary element of understanding
ecosystem organization.

2.1. Quantifying pathway proliferation

Here, we review relevant definitions and results from graph
theory and linear algebra. We first show why the dominant
eigenvalue of a strongly connected digraph is a good measure
of the node—node proliferation rate. We conclude by
describing how the dominant eigenvalue can distinguish
between fundamentally different ecological networks.

In a directed graph, a pathway is an alternating sequence
of nodes and links connecting a starting and a terminal
node. Pathway length m is the number of links in the
pathway. For example, in the directed graph D in Fig. la
there is a pathway of length 2 from nodes 1 to 3 (e.g.
1 — 2 — 3). Cycles are pathways with the same starting
and terminal nodes, and a cycle of length 1 is a self-loop. In
our example network, 1 - 2 — 3 — 1 is cycle of length 3,
and 4 — 4 is a self-loop. Pathways with self-loops are
termed walks, those without are paths (Patten, 1985a).
Alternatively, we can represent D with its associated and
isomorphic adjacency matrix A,., = (a;), where a; =1 if
and only if there is a link from j to i (note column to row
orientation), otherwise a; = 0 (Fig. 1b). The number of
direct links terminating or starting at a node is termed the
in- and out-degree, respectively. These are calculated as
K" = (k') = 31 a; and K™ = (k{"') = YI_ a;, where K"
and k° are 1 x n and n x 1 vectors, respectively. Average
in- and out-degrees ((k™) or (k°“)), and degree distribu-
tions P(k) are ways of characterizing network structure
(Albert and Barabasi, 2002; Newman, 2003; Ulanowicz
and Wolff, 1991).

Indirect pathways (m> 1) are enumerated by raising the
adjacency matrix to the mth power A = (a;)" (Ponstein,
1966). Again, pathway proliferation is the tendency for the
number of pathways in a network to increase without
bound as a function of increasing pathway length (Fig. 1c¢).
Borrett and Patten (2003) approximated whole-system
pathway proliferation rate as

log(3- 3~ a”)
log(X X ay )’

where ag-”) signifies the a;; element of A™, but this aggregate
estimate only holds for sufficiently large m. Therefore,

following Fath (1998), here we will define pathway
proliferation in terms of the rate at which agn) changes as
m — oo. This makes pathway proliferation a combinator-
ial property of A (Seneta, 1973).

As m increases, the development of A” is determined by
its characteristic polynomial, (1) = det(AI — A), where 1 is
the variable in the polynomial and [, is the identity
matrix (Godsil, 1993; Seneta, 1973). The eigenvalues
(i, i=1,...,n) of A are roots of the characteristic
polynomial, determined as solutions to ©(1) = 0. The set
of eigenvalues {41 =1,> --- = 4;= --- >/,} is the spectrum
of A, which Cvetkoviac et al. (1980) study to determine
structural properties of graphs. In undirected graphs, A is
symmetric and all 4; are real; in directed graphs 4; may be a
complex number.

In addition to being the roots of the characteristic
polynomial, the eigenvalues must satisfy AW = AW, where
Wsn = [Wilwa] ... |w;|...|w,] is a composite matrix of
the right eigenvectors w;, and A, = diag(4;) is a matrix
with the eigenvalues of A on the principle diagonal and
zeros in all other positions. Further, the eigenvalues must
satisfy VA = VA, where V,, = [vi|va]...|vi|...|v,] 1s a

composite matrix of the left eigenvectors v;. A™ is then
determined as
A" =W x A" x Wil,
A0 -0
0o A - 0
A" =W x x W, (1)
o 0 - A

where W is as before and W' is the matrix inverse of W,
which are the transposed complex conjugates of the left
eigenvectors V (Caswell, 2001). If we let v¥ be the ith row
of W1, then we can rewrite Eq. (1) as

A" =27 WivE A+ ATWavE 4 AWV 4 2 WY (2)

Eq. (2) is the pathway generating function of A (Godsil,
1993), and illustrates how the development of A” depends
on the spectrum of A.

Next, we introduce two classification schemes, one for
digraphs and one for matrices, because they are required to
apply a theorem that will let us develop a succinct estimate
of the pathway proliferation rate. In the first scheme,
digraphs are classified as one of three types: strongly
connected, weakly connected, and disconnected. A digraph
is strongly connected (strong) if it is possible to reach every
node from every other over a pathway of unspecified
length. Bang-Jensen and Gutin (2001) define a (sub)di-
graph with only one node as strong, though this is trivial
for our purposes. A weakly connected (weak) digraph is
one in which it is possible to reach any node from any
other node if we ignore link orientation, but it is impossible
when following link orientation. Nodes of a weak digraph
must have an in-degree or out-degree of at least 1.
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Fig. 1. Example digraph, its associated adjacency matrix, and pathway proliferation. (a) Digraph D composed of strongly connected components
K, ={1,2,3}, K, = {4}, K5 = {5}, K4 = {6}, K5 = {7}, (b) the adjacency matrix A associated with the digraph D (dotted lines denote strongly connected
components), and (c) a plot demonstrating pathway proliferation from nodes 3 to 1: the number of pathways a(;f) increases as pathway length m increases.
Transient effects created by smaller eigenvalues are visible in the first 10 pathway lengths, but the rate of pathway proliferation has nearly converged to

A1 (Ky) = 1.32 by a pathway length of 20.

A disconnected graph is one that contains one or more
non-adjacent strong or weak components. The digraph in
Fig. 1a is disconnected.

The second classification scheme distinguishes three
types of adjacency matrices. A matrix is irreducible if and
only if it is associated with a strong digraph, while one
associated with a weakly connected or disconnected
digraph is reducible (Berman and Plemmons, 1979).
Irreducible matrices are further divided into two classes:
primitive and imprimitive. A primitive matrix is an
irreducible matrix that becomes positive (a;>0, for all
i,j) when raised to a sufficiently large power (Seneta, 1973).

Furthermore, all adjacency matrices are non-negative
because all a; are greater than or equal to zero.

Weak and disconnected digraphs are decomposable into
a unique set of maximally induced, strong subdigraphs
(K;, i=1,...,0, where a<n), which are termed strongly
connected components (Bang-Jensen and Gutin, 2001). An
induced subdigraph of D is a subset of nodes in D with all
links that both start and terminate on the node subset,
and a maximally induced subdigraph is the largest one
that is strong. This implies that there is at least one simple
cycle (no repeated medial nodes) that connects all nodes in
a non-trivial strongly connected component. Further,
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adjacency matrices associated with K; are irreducible. For
example, the digraph in Fig. la contains two connected
subdigraphs {1,2, 3,4} and {5,6,7}. In addition, it can be
partitioned into five strongly connected components
Ki ={1,2,3}, K, = {4}, K5 = {5}, K4 = {6}, Ks = {7}, of
which only K; is non-trivial. The adjacency matrix
associated with each strongly connected component is
irreducible; the adjacency matrices associated with K; and
K, are primitive.

Given these definitions, the Perron—-Frobenius theorem
guarantees there is one real eigenvalue equal to or larger
than all other eigenvalues, 41 =4; (i = 2,...,n), in irredu-
cible matrices (Berman and Plemmons, 1979; Seneta, 1973).
In the literature A;(A) is alternately referred to as the
dominant eigenvalue, the Perron eigenvalue, and the
spectral radius. Next, we illustrate why 4;(A) is a good
measure of the pathway proliferation rate.

As shown by Caswell (2001), we can divide both sides of
Eq. (2) by 4; to obtain

m ﬂl /"L}” m
77 = + - ,1’” WaV2 =i W3V3 - - o =i WV 3)
4 g

If A is primitive and irreducible, then 4 is strictly larger
than ||4;]| for all i>1, where || o || is the norm of e (this is
necessary since 4; may be complex). Taking the limit
of both sides of Eq. (3) as pathway length increases, we find
that

m

lim —;
m— 00 ;”1

= WjV]. (4)

Thus, smaller eigenvalues influence pathway proliferation
over shorter path lengths (Fig. 1c), but as path length
increases the pathway proliferation rate asymptotically
becomes ;. Consequently, A’”“/Am — A1 as m— o0
(Hill, unpublished ms.), and 4; is the asymptotic rate of
pathway proliferation in a strongly connected graph with a
primitive adjacency matrix. In addition, the damping ratio
A1

Pl ©
characterizes the rate of convergence to 4;(A) (Caswell,
2001).

In strong digraphs with an imprimitive and irreducible
adjacency matrix there are ¢<n eigenvalues with the same
absolute magnitude, and one or more may be complex
(Seneta, 1973). The Perron—Frobenius theorem then
indicates that the common absolute magnitude of the ¢
eigenvalues will be larger than the other n — ¢ eigenvalues.
In this case, the dominant eigenvalue has a multiplicity of
¢, and as m — oo only the ¢ largest ecigenvalues will
influence pathway proliferation. Caswell (2001) reports
that these digraphs generate oscillatory dynamics.

Given these mathematical results, each strong compo-
nent K; of a weak or disconnected digraph will have an
independent rate of pathway proliferation, 4,(K;) (read “4;
of K;”). The eigenvalues of a reducible matrix are the union
set of the eigenvalues of the adjacency matrices associated

with strongly connected components (Jain and Krishna,
2003). Thus, the maximum dominant eigenvalue of the
strongly connected components will be the dominant
eigenvalue of the whole digraph. Further, trivial strongly
connected components—those with only one node—will
have a pathway proliferation rate of unity or 0 depending
on whether or not it has a self-loop. Thus, if a digraph is
composed of only trivial strongly connected components
without self-loops, pathway proliferation will not occur.
This is true of all acyclic digraphs, and suggests that we can
use the dominant eigenvalue to detect the presence of cycles
in digraphs (Jain and Krishna, 2003). For this application
there are three cases:

(1) if 2;(A) = 0, then A has no cycles;

(2) if 21(A) = 1, then A has at least one cycle and all cycles
occur in strongly connected components that have only
one simple cycle; and

(3) if 2;(A)>1, then A has more than one simple cycle.

Based on an independent development, Fath (1998)
interpreted similar results as three classes of feedback: (1)
no feedback, (2) simple feedback, and (3) cyclic feedback in
strongly connected networks. Notice that a graph with
A1(A)=1 could have a reducible or irreducible adjacency
matrix, while the adjacency matrix of a graph with 4,(A) =
0 is necessarily reducible with o =n trivial strongly
connected components.

Similarly, as m — oo we can summarize three possibi-
lities for the dominant eigenvalue as a measure of pathway
proliferation in digraphs:

(1) if 21(A) = 0, then the number of pathways between two
nodes declines to zero;

(2) if A;(A) =1, then the number of pathways between
nodes in a strongly connected component remains
constant; and

(3) if 41(A)>0, then the number of pathways between
nodes in at least one strongly connected component
(K;) increases without bound at an asymptotic rate
equal to A4;(K;) where max(4(K;)) = 4;(A).

2.2. Bounds and expected values of pathway proliferation

Given that A;(A) is the asymptotic rate of pathway
proliferation in strong digraphs, it would be useful to know
its theoretical bounds and expected value. Again, existing
mathematics provides us with some of these answers.

Matrix theory bounds the dominant eigenvalue of a non-
negative matrix by the minimum and maximum column
(row) sum, which in the context of directed graphs is the
minimum and maximum out-degree (in-degree), where
equality holds only if k" = k°“ (Berman and Plemmons,
1979; Seneta, 1973). Thus, max(mln(k’”) mm(k("”))<m
(A< mln(max(k’”) max(k"”’)) In a strongly connected
digraph with more than one node, all nodes must have at
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least one and a maximum of » incoming and outgoing
links. Therefore, 1</A;(A)<n for a strong digraph. As
stated previously, a trivial component with no self-loops
will have A;(K;) =0, and a complete graph will have
A(A) = n (allowing self-loops). Notice that in the binary
matrix A, 1(A) cannot take values between 0 and 1.
With these bounds, we can now examine the expected
value of A(A). In undirected random graphs G with A =
(a;) where a; = a; =1 with probability p (0<p<1) and
a; = a; = 0 with probability (1 — p), Juhasz proved that

21(A
lim al ):p

n—oo n

(6)

(Cvetkoviac and Rowlinson, 1990). This implies that
A1(A)~np in the limit of large n. Furthermore, given
A1(A) and n we can determine the approximate number of
undirected edges in A. A random graph is not necessarily
connected, but Erdés and Rényi (1959, 1960) showed
that the fraction of nodes connected in a single com-
ponent increases rapidly when the average link density
exceeds unity.

The expected value of A4;(A) is sensitive to the assump-
tions of random graphs. For example, Farkas et al. (2001)
and Goh et al. (2001) found that in random graphs with a
power-law distribution of node degrees rather than the
standard Poisson distribution, A;(A) increased with ap-
proximately n'/*. Furthermore, de Aguiar and Bar-Yam
(2005) demonstrated that the expected A;(A)is further
modified if the network topology displays a hierarchic
modularity.

Random graphs are well studied, but properties of
random digraphs are less well known. Some characteristics
are similar to undirected graphs. For example, the in- and
out-degree of random digraphs has a Poisson distribution,
and when link density is greater than unity the expected
size of the largest strongly connected component increases
rapidly (Barbosa et al., 2003; Karp, 1990; Luczak, 1990).
However, we are unaware of results regarding the spectra
of random directed graphs. Therefore, we numerically
verified that A;(A)~np remains plausible for random
directed graphs by determining the largest eigenvalue in
an ensemble of 99,000 random digraphs (50 from each
combination of n={2,3,...,100} and p = {0.05,0.10,
0.15,...,1}). Our results indicate that 1;(A)~nC = L/n,
where C = L/n* is an estimate of p (Fig. 2). As either L
increases or n decreases the residual error decreases. We
conclude that in random digraphs, as in undirected random
graphs, A;(A) is largely determined by the combination of
the number of nodes and number of direct connections;
pattern of connections has a minor influence. In digraphs
with a more structured topology—such as those with
power-law in-degree or out-degree distributions or mod-
ularity—we might expect 4;(A) to deviate from L/n as it
does in undirected graphs, though this remains to be
explored.

In ecological networks where 7 is the number of species
(functional groups, etc.) and L is the number of direct

100+

754

50

L1 (A)

254

o observed
— predicted

(a) T T T T T

T T T
0 25 50 75 100

(b) L/n

Fig. 2. Dominant eigenvalue in random digraphs. (a) Points show the
relationship between dominant eigenvalues Z;(A) and link density L/n in
99,000 uniform random digraphs where a; =1 with probability p and
a; = 0 with probability (1 — p) (50 replicates of each combination of n =
{2,3,...,100} and p = {0.05,0.10,...,1}). The line indicates the expected
A1(A) = L/n relationship. (b) Distribution of residual values indicating
that as L/n increases it becomes a better predictor of A(A).

transactions, the rate of pathway proliferation will be
heavily influenced by species richness and direct link
abundance. However, the results of Farkas et al. (2001)
and Goh et al. (2001) suggest that if the degree distribu-
tions are skewed, as has been demonstrated for some food-
webs (Dunne et al., 2002b; Montoya and Sole, 2002;
Williams et al., 2002), or the networks contain other types
of order such as modularity, then the residual error d =
|21(A) — L/n| may be larger than expected from random
graphs.
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We have presented three key results in this section. First,
pathway proliferation occurs only if there is more than one
cycle or feedback in the graph (i.e. it does not occur in
acyclic networks). Second, the dominant eigenvalue of
strongly connected components 4;(K;) is the asymptotic
proliferation rate for all nodes within that component, and
this rate can vary between strongly connected components
within a network. Further, the largest 4,(K;) of a network
is the dominant eigenvalue for the whole network such that
max(4;(K;)) = 21(A). Third, although topology can be a
factor, the proliferation rate is heavily influenced by the
number of nodes and number of direct links. Additionally,
networks composed of o non-trivial strongly connected
components K; (i=1,...,4) have a form of structural
modularity that may be functionally significant to the
complex systems being modeled.

3. Modularity and pathway proliferation in food-webs

In this section we build on our conceptual and
mathematical developments by applying the theory to
determine the pathway proliferation rates in 17 of the
largest empirical food-webs currently available, which are
identified in Table 1. Five of the food-webs are terrestrial,
three are from freshwater habitats, and seven represent
marine or oceanic habitats. Following accepted protocol,
original food-webs were modified such that any species or
functional groups with identical predators and prey were
grouped as a “‘trophic species” or trophospecies to reduce
methodological bias in the data (Cohen et al., 1990; Pimm

Table 1
Topological properties of 17 empirical food-webs

S.R. Borrett et al. | Journal of Theoretical Biology 245 (2007) 98111

et al., 1991; Yodzis, 1982, 1998). These food-webs have
been the subject several network analyses (Dunne et al.,
2002a, b, 2004; Williams et al., 2002; Williams and
Martinez, 2000) which previously reported their number
of trophospecies or nodes n, connectance C = L/n?, the
proportion of basal species % B (kﬁ" = 0), proportion of
intermediate species %I (k¥, k%' >0), proportion of top
species % T (k"' = 0), and link density L/n. We reproduce
this basic network information in Table 1 for com-
parison. In addition, Dunne et al. (2002a, b) showed that
several have skewed degree distributions (i.e. power-law,
exponential).

3.1. Methods

We first identified and characterized all strongly
connected components (K;), including their rates of path-
way proliferation and damping ratio, in these food-webs.
We envisioned three possible outcomes. If food-webs were
adequately modeled by random digraphs then we would
expect each web to have one strongly connected compo-
nent encompassing most if not all of the nodes with a single
pathway proliferation rate close to link density 4;(A)~L/n.
This seemed unlikely given the known skewed degree
distributions and additional evidence that ecological
processes construct non-random topologies (Cohen et al.,
1990; Williams and Martinez, 2000), despite arguments to
the contrary (Kenny and Loehle, 1991). A second
possibility is based on the observation that most early
food-webs were acyclic (Cohen et al., 1990). Thus, the 17

Habitat Food-web Original reference Taxa® n* C*  %B* %I %T* L/n* (A d Pr(d) #K %K
Terrestrial Coachella Valley Polis, 1991 30 29 0.31 10 90 0 9.03 635 2.7 0.001* 2 59
St. Martin Island Goldwasser and Roughgarden, 1993 44 42 0.12 14 69 17 4.88 0.00 4.9 0.001* 0 0
El Verde Rainforest =~ Waide and Reagan, 1996 156 155 0.06 18 69 13 9.74 10.25 0.5 0.001* 1 45
UK Grassland Martinez et al., 1999 75 61 0.03 18 69 13 1.59 0.00 1.6 0.001* 0 0
Scotch Broom Memmott et al., 2000 154 85 0.03 1 40 59 262 1.00 1.6 0.001* 0 0
Lake/Pond Skipworth Pond Warren, 1989 35 25 032 4 92 4 7.88 3.00 4.9 0.001* 2 20
Bridge Brook Lake Havens, 1992 75 25 0.17 32 68 0 428 2.00 23 0.001* 1 8
Little Rock Lake Martinez, 1991 181 92 0.12 13 86 1 10.84 6.20 4.6 0.001* 2 26
Stream Canton Creek Townsend et al., 1998 108 102 0.07 53 22 25 6.83 1.00 5.8 0.001* 0 0
Stony Stream Townsend et al., 1998 112 109 0.07 56 27 17 7.61 1.00 6.6 0.001* 0 0
Estuary Chesapeake Bay Baird and Ulanowicz, 1989 33 31 0.07 16 52 32 2.19 1.00 1.2 0.001* 0 0
St. Marks Estuary Christian and Luczkovich, 1999 48 48 0.10 10 80 10 460 1.00 3.6 0.001* 0 0
Ythan Estuary, 1991  Hall and Raffaelli, 1991 92 83 0.06 9 54 37 476 1.62 3.1 0.001* 1 2
Ythan Estuary, 1996  Huxham et al., 1996 134 124 004 4 56 40 4.67 1.62 3.1 0.001* 1 2
Marine Benguela Yodzis, 1998 29 29 024 7 93 0 7.00 3.00 4.0 0.001* 2 21
Caribbean Reef, small Opitz, 1996 50 50 022 6 94 0 11.12  8.63 2.5 0.001* 2 60
NE US Shelf Link, 2002 81 79 022 3 94 4 17.76  4.87 129 0.001* 2 39

Taxa refers to the original number of species; 7 is the number of nodes or trophospecies; C = L/n? is connectance; % B, %1, and %T are the proportions
of basal (indegree = 0), intermediate (indegree and outdegree >0), and top (outdegree = 0) trophospecies; L/n is link density; 4;(A) is the dominant
eigenvalue of the entire foodweb; d = |21(A) — L/n|; Pr(d) is the fraction of an ensemble of 1001 random digraphs in which d is greater than or equal to
that observed in K;; *indicates statistically significant Pr(d) at « = 0.05; #K is the number of non-trivial strongly connected components; %K is the percent

of species in a non-trivial strongly connected component.

“Topological properties previously reported for these food-webs (Dunne et al., 2002a, 2004; Williams and Martinez, 2000).
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food-webs in our study, all developed since 1990, might
also be acyclic digraphs with no non-trivial strongly
connected components. In this case, pathway proliferation
would not occur and 4;(A) = 0. A final possibility is that
the food-webs would tend to have one or more strongly
connected components and multiple pathway proliferation
rates. This outcome would support the hypothesized
modularity of ecological systems which is thought to
increase system stability (Krause et al., 2003; May, 1972;
Pimm and Lawton, 1980; Yodzis, 1982).

In Section 2 we hypothesized that the absolute difference
between the dominant eigenvalue and its expected value in
random digraphs (L/n) might be a useful indicator of the
significance of network topology. To assess this hypothesis,
we used Monte Carlo simulations to determine if d =
|41(A) — L/n| was larger than expected. We had two scales
of analysis: whole food-web and non-trivial strongly
connected components. For both, we constructed 1001
uniform random digraphs with n nodes, where each
possible link was connected with probability p equal to
the original network’s connectivity (p = C). We assessed
statistical significance by determining the fraction of
random digraphs in which d was equal to or greater than
observed in our network of interest, Pr(d). Assuming a
significance level of o = 0.05, Pr(d)<0.05 implies d is
statistically significant.

When applied to the entire food-web, a significant
difference with the null model implies that topological
factors beyond species and link richness are significant in
determining the whole system dominant eigenvalue. This
could be the size or frequency of strongly connected
components within the network, as suggested by the
analysis in Section 2, or perhaps a skewed degree
distribution. If the food-webs had more than one non-
trivial component, then we expected the deviation to be
large.

When applied to strongly connected components, a
significant deviation of d also indicates the importance of
network topology. However, given that they are irreducible
by definition, a significant deviation of d within a
component must indicate the significance of another
element of topology, such as the degree distribution.

3.2. Results

Food-webs included in this study range in size from 25 to
155 trophospecies and 3% to 32% connectance (Table 1).
They tend to have a large proportion of intermediate
species (i.e. those with k;">0 and k;’“t>0), although the
two stream food-webs are notable exceptions. Ten of the 17
food-webs examined contained at least one non-trivial
strongly connected component; six had two. Five of the
remaining food-webs had a dominant eigenvalue of unity,
implying that at least one node contained a self-loop. Our
results reveal that the majority of these food-webs have at
least one directed cycle, contrary to earlier food-web theory
(Cohen et al., 1990).

While the majority of the food-webs have a modular
organization that is based on strongly connected compo-
nents, the proportion of species involved in the modules is
variable. In food-webs that have a non-trivial strongly
connected component, the proportion of the original nodes
involved ranges from 2% in the two Ythan Estuary food-
webs to 60% in the Caribbean Reef model. Notice that the
definition of a strongly connected component bans nodes
that have no inputs or no outputs, which excludes basal
species (k}” =0) and top consumer species (kj‘?“’ =0).
Therefore, the total number of species in strongly
connected components is limited by the number of
intermediate species. This may be a factor in why the two
stream food-web